Enthalpy is the sum of a thermodynamic system‘s internal energy and the product of its pressure and volume. It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere. The pressure–volume term expresses the work W that was done against constant external pressure Pext to establish the system’s physical dimensions from Vsystem,external = 0 to some final volume  Vsystem,final (as W = PextΔV), i.e. to make room for it by displacing its surroundings. The pressure-volume term is very small for solids and liquids at common conditions, and fairly small for gases. As a state function, enthalpy depends only on the final configuration of internal energy, pressure, and volume, not on the path taken to achieve it.

In the International System of Units (SI), the unit of measurement for enthalpy is the Joule. Other historical conventional units still in use include the calorie and the British thermal unit (BTU).

The total enthalpy of a system cannot be measured directly because the internal energy contains components that are unknown, not easily accessible, or are not of interest for the thermodynamic problem at hand. In practice, a change in enthalpy is the preferred expression for measurements at constant pressure, because it simplifies the description of energy transfer.